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The canonical and path-integral quantization of the non-Abelian higher-derivative 
Chern-Simons model in three dimensions coupled to a matter field is constructed. 
The expression of the gauge field propagator in the momentum space for this 
higher-derivative model is computed. In the framework of the perturbative 
formalism, the diagrammatic and the Feynman rules are analyzed. Among other 
results, we conclude that higher-derivative terms added to the Lagrangian improve 
the ultraviolet behavior, rendering the model less divergent. 

1. I N T R O D U C T I O N  

The Chern-Simons term for both Abelian and non-Abelian cases has 
long been considered and is of increasing interest. It makes a strong impact 
on the physics of (2+ 1) dimensions, giving rise to several types of classical 
and quantum field theories (Jackiw, 1987; Siegel, 1979; Shonfeld, 1981; 
Deser et  al., 1982a, b, 1988; Hagen, 1984, 1985; Dzyaloshinskii et  al., 1988; 
Wiegmann, 1988; Polyakov, 1988; Bednorz and MUller, 1986; Anderson, 
1987; Matsuyama, 1989, 1990a; Liascher, 1989; Jackiw et  aL, 1994; Lin and 
Ni, 1990; Avdeev et  al., 1992; Odintsov, 1992). In particular, two relevant 
cases are: 

(i) The coupling of the C P  ~ model with Chern-Simons theories (Dzyalo- 
shinskii et  al., 1988; Wiegmann, 1988; Polyakov, 1988; Bowick et  al., 1986; 
Semenoff, 1988; Panigrahi et  al., 1988a,b; Babinovici et  al., 1984; Matsu- 
yama, 1990b). The resulting model with an action of the hidden U(1) gauge 
field was also used as a promising model to explain high-To superconductivity 
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phenomena (Bednorz and MUller, 1986; Anderson, 1987). Matsuyama 
(1990b) performed the canonical and path-integral quantizations of the 
fermion-coupled C P  1 model with the Abelian Chern-Simons term. 

(ii) The use of the Chern-Simons term in the anyon formalism of 
quantum mechanics as well as in the nonrelativistic field theory (Wilczek, 
1982a,b; Goldhaber, 1982; Jackiw and Redlich, 1983; Wu, 1984a,b; Arovas, 
1985; Halperin, 1984; Cort6s et  al., 1992, 1994). 

Another crucial paper related to these topics is that of Witten (1988), in 
which the theoretical framework needed to understand knot theory was given. 

On the other hand, several authors (Slavnov, 1971, 1977, 1981; Lee and 
Zinn-Justin, 1972; Ellis, 1975; Leon and Rodfiguez, 1985; Kerstyen, 1988; 
Nesterenko, 1989; Li, 1991; Alvarez-Gaume et  al., 1990; Leibbrandt and 
Martin, 1992, 1994; Greco et al., 1994; Foussats et  al., 1995) have investigated 
dynamical systems described by means of a singular Lagrangian density 
containing higher-derivative terms. For instance, the second-order formalism 
of the conformal (or superconformal) gravity (or supergravity) field theories 
is written in terms of a singular Lagrangian density which is a Chern-Simons 
term (or its supersymmetrization). Due to the constraints on curvatures, these 
are examples of proper higher-derivative theories (van Nieuwenhuizen, 1985; 
Foussats et  al., 1992). From the theoretical point of view, these kinds of 
theories present several interesting problems and constitute a current research 
area in quantum field theory. The lack of knowledge and difficulty in treating 
higher-derivative theories may be why they have not been intensively studied. 
Related to the higher-derivative character of the theory, one of the problems 
is connected with their unitarity (Hawking, 1987). The unitarity can be 
violated when ghost states with negative norm are present. 

Another question is to analyze the regularization and renormalization 
problem. It is known that in a perturbative framework, the presence of higher- 
derivative terms improves the behavior of propagators at large momentum, 
rendering the theory less divergent (Alvarez-Gaume, 1990), which can be an 
interesting quality of the model. The case of Chern-Simons theory is believed 
to belong to the class of finite theory. That is to say, once the theory is 
regularized, a finite quantity is obtained without using the renormalization 
procedure. Of course, the price is the appearance of new vertices in the theory. 

We believe in the importance of studying quantum methods in higher- 
derivative field theories. Therefore, the motivation of the present paper is to 
carry out the canonical and path integral quantization of a non-Abelian 
Chern-Simons theory containing higher-derivative terms in the action and 
coupled to a matter field. Later, it will be interesting to construct the perturba- 
tive theory for the model by defining proper Feynman rules and a suitable 
diagrammatic. 
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The paper is organized as follows. In Section 2, we construct the classical 
generalized Hamiltonian formalism, finding the first-class constraints associ- 
ated with the gauge symmetries of the system. Next, the canonical quantization 
is carried out. In Section 3, the path integral method is developed by extending 
the Faddeev-Senjanovic formalism. Moreover, in opposition to what happens 
in the Abelian case, in the non-Abelian one, the determinant constructed with 
the gauge-fixing conditions and the first-class constraints depends on the 
gauge field variable. So, by means of the Faddeev-Popov trick it is shown 
how the ghost anticommuting auxiliary scalar fields must be introduced in 
this higher-derivative model. Finally, in Section 4, the diagrammatic and 
Feynman rules of the model are found. They are obtained by defining a 
suitable gauge field propagator. 

2. G E N E R A L I Z E D  H A M I L T O N I A N  F O R M A L I S M  A N D  
C O N S T R A I N T S  

With the aim of constructing the classical generalized Hamiltonian for- 
malism and next of carrying out the corresponding canonical quantization, 
we will work as closely as possible to the Dirac (1964) algorithm. 

We start by considering the following singular Lagrangian density: 

5~ = 9~top + ~h + ~f  (2.1) 

describing the matter field t~ coupled to non-Abelian Chern-Simons (CS) 
theories in (2+ 1) dimensions whose SU(N)  gauge connection is called ~ .  
So, the fields are written ~b = t~at ~, ~ = A~t ~, and ~ = F ~ t  ~ = 0~1~ 
- 0~,~ + [..~, ..~] (where an arbitrary coupling constant g in front of the 
commutator was omitted). The t ~ are the generators of the Lie algebra associ- 
ated to the gauge group SU(N),  i.e., It a, t b] = ffbctc, tr(t~t b) = 6 oh, tr(tatbt c) 
= f,bc, and a, b, c denote group representation indices. The field strength 
components are written 

F ~  = O~A~ - O~A~ + f~bCAb a C (2.2) 

To write the Lagrangian density, the trace in the Yang-Mills space must 
be performed. 

In equation (2.1), ~s is the Lagrangian density for topologically massive 
SU(N)  gauge theory, i.e., a non-Abelian CS term, and it is given by 

l t r ( ~ ) +  K ( 2 ) 
~/~top - -  4 ~ e~Ptr 0,~/~,.~p + ~ ~ M ~ p  

1 F a  l:a~ ~ K ~ p ( , ~  AaAa l fabcA~abacp~ = - ~  - ~ -  + - -  + ] (2.3a) 



1040 Foussa t s ,  Manave l la ,  Repetto, Zandron, and Zandron 

The part containing higher derivatives is 

c 2 
~ h  - 47r ~~162 (2.3b) 

and the fermionic piece is given by 

a + l -  a - 1  - ~  
~ f =  i(------~--)tb',/~t~ + i ( - - - ~ ) ~ q J ~ /  qJ - m~t~ (2.3c) 

where the kinetic term of the fermion is included in the general form using 
the parameter a (Sundermeyer, 1982). 

The covariant derivative %~ acting on objects V a with a Yang-Mills 
f A~  V c ~cabcl(;'b v c  index is ~ r  a = O~V" + ~bc b and [~1*' ~ ) v ] v a  = . I  - - l z v -  �9 

The constant K is the topological mass of the gauge field and its dimen- 
sion is [length]-~; the dimensional constant c has dimension [length] 1. We 
will use the convention e ~ = e~2 = 1; the Minkowskian metric g~, is g ~  
= diag(1, - 1 ,  - 1 )  and the Dirac -y-matrices are ~/0 = 0.3, ,~1 = i0.~, and ,y2 
= i0. 2 (0.'s are the Pauli matrices). 

Now we must define the canonical variables. When we have in hand the 
second-order Lagrangian density (2.1) the canonical variables are introduced 
according to the Ostrogradski (1850) transformation. Let us consider the 
independent dynamical field variables ,7/~, ~ = ~ ,  ~(,~), and t~ )  in the 
Lagrangian density (2.1). By performing the Ostrogradski transformation, 
the following canonical momenta are introduced: 

OY OY 
~ = 0 . ~  - O~ 0(0~9~r (2.4a) 

~ = 0 ~ / 0 ~  (2.4b) 

II  ~ = 0~/0+~,~) (2.4c) 

1I (~) = 0~/0~(~) (2.4d) 

The momenta pa~, Qa% Ha), and II{'~) now are written as follows: 

par~ = Faro + K O~v a C - -  E ' A  v - -  - -  ~ i ~ j i F  al*O 
4"rr 'rr 

_ ~oQ,,~ _ c ~i~3oFar i + faOcA~Qb ~ (2.5a) 
"iT 

Qa~ = c ~0Fa~0 (2.5b) 
q"r 
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I-I~,~) = i(~-~-)(yo+a)(~) (2.5C) 

- -  a +  1 --a 
H~) = - i ( - - ~ ) ( ~  Yo)(~) (2.56) 

where the Poisson brackets_ for the pairs of canonical conjugate variables 
(A~; W~), (B~; Q"~), (+; H), and (+; H) are as usual (Sundermeyer, 1982). 

The above equations (2.5) say that the three primary constraints are 

tff~(O)a(x) ~- a a ~  ~ 0 (2.6a) 

a - 1)  a 
~q~,~(X) = II{'=) - i ~ (yot~)(~) ~" 0 (2.6b) 

(a+l)  a 
O{~)(x) = II{',~ + i ~ (t~ ~/o)(,~ ~ 0 (2.6c) 

So, the generator of time evolutions of generic functionals, which is a 
first-class dynamical quantity in the Dirac sense, is given by 

Hr = f d2x ~r  (2.7) 

In equat ion (2.7),  the extended Hamiltonian density {gr remains 
defined by 

= '~a ~ ( ~ )  ~ ~ ( a ) ~ a  (2.8) 

where 8 a are bosonic Lagrange multipliers and k(~ '~ and k(2 ~ are fermionic. 
In equation (2.8), the explicit form of the Hamiltonian ~/[~can as a functional 

of fields and momenta is obtained by computing the following expression: 

(2.9) 

Now we must analyze the constraint structure, continuing with the Dirac 
algorithm. When the consistency conditions ~ = [f~, Hr] ~ 0 on the two 
fermionic primary constraints is implemented, the Lagrange 
k ~  and k ~  are determined: 

~k~ot) = ~to~li~illJ a + im'Yo@' + fabcA~t~c 

=  75ar -- im- ~ + f~ 

multipliers 

(2.10a) 

(2.10b) 
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On the other hand, the consistency condition on ~~ given in (2.6a) 
gives rise to the following secondary constraints: 

(I)(l)a = [lff~(O)a, HT ] = __paO + ~ iQai  ~ 0 (2.11a) 

1ff~(2)a ~___ [~(l)a, HT] 

= __~iPai __ K.~ OiA;~_ij _ fabcBbiQCi 
4"rr 

-fab~A~)iQci + ifabd~b'yO~ ~" 0 (2.1 lb) 

and after some algebra it is possible to find 

dp(3)a = [dxrp(2) a, HT] = --fabcAbf~p(2)c (2.1 lc) 

The result (2.1 lc) should be expected, because equation (2.1 lb) is the 
zero component of the equations of motion. 

So, from equation (2.11c) we can see that ~(3)a is naturally a weakly 
zero quantity. 

At this point, we must classify the constraints. By computing the brackets 
among constraints, we can conclude that there are two first-class constraints 
(qb ~~ and qb~l)a) and the remaining three (~2)a, f~a, and 1~ a) are of second 
class. Consequently, as the second-class constraints are odd, we need to find 
at least a suitable linear combination from these. It is not hard to show that 
the linear combination among the constraints ~c2~a, 12a, and f ~  which gives 
rise to a new first-class constraint is 

Oa(x) = f ,  bc('~blIc + ~bqjc) + ~iP~i + ~ ~.iJOiA~ 
4"rr 

+ fabcB~QCi + fabCA~iQCi ~ 0 (2.12) 

Consequently, equations (2.6a), (2.11a), and (2.12) give the three first- 
class constraints associated with the gauge symmetries of the coupled system. 
As pointed out above, the only remaining second-class constraints in the 
model are the fermionic ones, which in the Dirac picture will be treated as 
strongly equal to zero equations. 

At this stage, we are ready to construct the Dirac brackets and carry 
out the canonical Dirac quantization formalism. As is well known, the Dirac 
brackets for variables 01(x) and O2(y) are defined by 

[OI(X), O2(Y)]D = 

[OI(X), O2(y)]pB -- [OI(X), ~"~a]pBAab[~'~b, O2(y)]pB (2.13) 



N o n - A b e l i a n  H i g h e r - D e r i v a t i v e  C h e r n - S i m o n s  T h e o r i e s  1 0 4 3  

where the matrix A ab is the inverse of the matrix constructed with the elements 
[l~a, ~h]PB involving only the second-class constraints Oa, i.e., Aab[O b, 12c]pB 
= B~, and one finds 

(o ;0) A = t ,y~ gabS(x -- y) (2.14) 

Using the definition (2.13), we can obtain the Dirac brackets among 
dynamical variables. We write below only the nonvanishing Dirac brackets 
which are different from the Poisson brackets. In the present case, they 
correspond to brackets involving only fermionic dynamical variables. There- 
fore, the field-field brackets are written 

[~f~)(x), ~ ( Y ) ] D  = --i("/o)~(~aabS(x -- Y) (2.15a) 

[0~c,)(X), t~(13)(Y)]o = --i("yO)~(f~)~b~(x -- y) (2.15b) 

The field-momentum brackets are 

[~'~)(x), II~)(y)]D = ~ g(~(~)8 g(x -- y) (2.16a) 

- -  = - ~ ~(~(~)~'bS(x - (2.1 [t~,~(x), l-l~f~)(y)]o ( ) y) 6b) 

and finally the momentum-momentum brackets are written 

- -  i 
[II~)(x), II~(y)]D = --~ (a 2 -- 1 ) ( 7 o ) ~ , ~ b S ( x  -- y) (2.17a) 

- -  i 
[I]~a)(X), l-I~[3)(y)] O = - -~  (a 2 - 1)(~/0)(~r - y) (2.17b) 

Looking at equation (2.13), we see that the Dirac brackets and the 
Poisson brackets for the bosonic variables are identical. 

As noted above, the system can be canonically quantified by using the 
Dirac brackets and taking the second-class constraints as strongly equal to 
zero equations. 

Hence the constrained Hamiltonian system for this higher-derivative 
theory is described by the total Hamiltonian 

= f dZx (~can -~- ~i~i) (2.18) H* 

where we have renamed with E~(x) (i = 1, 2, 3) the three first-class constraints 
given in (2.6a), (2.11a), and (2.12), corresponding to the gauge invariances 
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of the theory under local gauge transformations, and [3 i a r e  three arbitrary 
parameters. 

To complete the canonical quantization, the Dirac brackets between pairs 
of canonical conjugate boson variables (i.e., [A~, pb~] and [B~, Qb~]) and the 
brackets defined in (2.15)-(2.17) must be replaced in the equal-time commu- 
tators (or anticommutators) according to the rule 

1 
[Ol(X), O2(Y)]D -"> 7h [0102 - (-1)l~176 

where I Oil = 0 (or 1) when Oi is bosonic (or fermionic). 
In the next section use these results to study the diagrammatic of the 

model. 

3. P A T H - I N T E G R A L  Q U A N T I Z A T I O N  

The system we are treating has first- and second-class constraints and 
so the path-integral quantization must be accomplished according to the 
Faddeev-Senjanovic formalism (Faddeev, 1970; Senjanovic, 1976). Greco 
et al. (1994), for the simpler Abelian case, constructed the partition function 
for a higher-derivative model. That was done by generalizing the expression 
given by Faddeev and Senjanovic for the partition function. For the non- 
Abelian model containing higher-derivative terms, we assume that the parti- 
tion function in the Hamiltonian formalism is given by 

Z = f ~ ~ ~ ~9_ ~ ~(~) 

• ~II (~ ~(~) ~II(~ ~(X~) ~(X2) ~(X3) 

• B(A) B(fz) B(f3) det[El, Ez, E3,fl,f2,f3]oB(~~(a)) 8(~-).([3)) 

• det[lI(~), ~(f3)] exp i [ f  d3x(B:W~ + B,Q'a ~ + *II + H+) - HT] 

(3.1) 

where the functional integration is performed over all the phase-space volume 
corresponding to the independent dynamical variables N~, ~ ,  9~, and 9~. 

In equation (3.1) Hr is the extended Hamiltonian defined in (2.7). The 
quantities j~ ~-- 0 are the gauge-fixing conditions, one for each first-class 
constraint Ei(x). They are all independent and really restrict the phase space 
variables to the physical ones, and so the true Hilbert space is obtained. 
The gauge-fixing conditions, for all the first-class constraints, must satisfy 
det[Ei, fj]D V~ 0. Moreover, they must be compatible with the equations of 
motion and satisfy the condition If., j~] ~ 0. 
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From Greco et al. (1994), we note that in the Abelian case the matrix 
[El, fj]D does not depend on the field variables. The non-Abelian model is 
different and more complicated, even if it does not contain higher derivatives, 
because the determinant of this matrix, whose matrix elements are constructed 
from the Dirac brackets among the pairs (s depends on the field variables 
(Faddeev, 1970). 

When higher-derivative terms are present, only under certain assump- 
tions, depending on the gauge-fixing conditions, can this matrix be written 
as a suitable reversible nonlocal operator. In such a case the determinant of 
this matrix results in a nonlocal functional linearly dependent of the gauge 
field s~ .  

From the path-integral formalism for non-Abelian gauge theories (Fad- 
deev, 1970) it is well known that in the framework of perturbation theory, 
the determinant of a nonlocal operator M can be written in the integral 
representation, by using anticommuting scalar functions g and "q. Thus, a new 
term is added to the partition function (3.1) giving rise to an effective action. 

So, in the higher-derivative model under consideration, to obtain a 
suitable nonlocal operator M, we must choose three particular gauge-fixing 
conditions. Of course, this requirement does not avoid the arbitrariness in 
choosing the functionsf -~ 0. For instance, a convenient set of such conditions 
compatible with the equations of motion and satisfying det[s fS]D ~ 0 for 
all first-class constraints Ei is 

f'{ = B~ -~ 0 (3.2a) 

f ~  = Oi B a i  ~-, 0 (3.2b) 

f ~  = OiA ai ~ 0 (3.2c) 

As we will see, the gauge-fixing conditions (3.2) allow us to go over 
to a general covariant gauge in which the nonlocal operator M appearing in 
the path-integral quantization of Yang-Mills fields takes its well known 
covariant expression (see, for instance, Faddeev and Slavnov, 1980). 

On the other hand, the matrix [~1, E2, ~3, fl,  f2, f3]19 can be written 
as follows: 

(i 0o) 
[El, s "s f l , f2 ,  f3]D = Mab (3.3) 

0 M ab 

where A and M ~ are respectively given by 

A = [s f~] = --8~b8(X -- y) (3.4a) 

MOb ~ b = (8obV2 = []~3, f3] - -  f a h c A c o i ) 8 ( x  - y) (3.4b) 
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and B a b = [E3, f2] is a cumbersome functional depending on the fields. The 
det[El, Ez, E3, fl, f2, f3]o is independent of the functional B. 

Therefore, we can write 

det[El, E2, ~,3, fl,f2,f3]D = det A .det Mab'det M ab 

and so the unique dependence on the field is present in the operator M ab, 
which is reversible in the framework of perturbation theory. As the quantity 
det A is independent of the dynamical variables, it is included in the normaliza- 
tion factor appearing in the partition function (3.1). The same thing can be 
said for the factor det[l)(~, 1~(~)] written in equation (3.1). 

Before constructing the Feynman rules and the diagrammatic, we come 
again to the original gauge field ~/w To do this, we must add to the action 
in equation (3.1) a term of the form f d3x A~(~r - M,) with arbitrary 
multipliers A ~ and perform the integration on all their possible values. 

Consequently, the partition function becomes 

Z = I 5~/~ ~ b ~  ~b~, ~ v  

X g(fl) ~(f2) g0c3) det Mabg(~'~(ct))g(~'~(f$))~(~lz - -  ,~p . )  

• exp i [ f  d3x (Ba pa~ + "a av -~I~  jw f f + )  Hr] B,,Q + - (3.5) 

Now, by performing the path integral over the fields ~r 9 ~,  9r FI(~), 
and II (a), we find the partition function 

I - Z = ~ s ~  ~ ( ~ )  ~q~(~) g(f2)g(f3)(det M) 2 exp i[S~ (3.6) 

where the effective action S~ff is given by 

S~ = d3x - F ~F  ~q - -~ FoiF + - -  OoATA~d~ 
4~r 

a a i j  K a a ij K OiAoA) e + OiA~Ao e 

c 2 
..1.. "4-'~ 4~abc Aa A b A .c.xj ~ __ - ~  OO FajOO FaiJ 

C 2 C 2 
27r  O i F ~ j O i F a ~  - 4-~ OiF~k tg iFa ' / k  
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C~_ f a b c o i F ~ k A b i F c J k  - C2 C 2 _ _  ,eabc..q 17a A b O t T c i j  __ _ _  ~eabc.q l='a A b i l j ' c O j  
2,rr J u o r  i jra ~t' "aT J u i r  OJZa *r A"g7 

C 2 C 2 
__ _ _  ~'abc4:ade A b a d  I7c  L-'eij __ _ _  ,cabc#ade a b A d i F c  IS'eOj 

4 7 r  J J zaOzaOl' i j r  2 , r r J  J ~ i  ~ O j *  

C 2 
_ _  ~cabc~eade AbAdi l f f ' c  12ejk 
4 1 r  J J , ' a i ,~  r j k Z '  

a + l  a - 1  - 

- m-~Ot~ - i f a b c ' ~ b y ~ o c A a ~  

) "34~abc..3 A b  Ac ~-a t ,0n i nO f a b c A b ~ i A ~ ] 2  2rr  [ a 0 a 0 A e  - - ( 3 . 7 )  

In equation (3.7), the last bracket is obtained as a consequence of the 
Gaussian path integration on the dynamical variable Qi. 

From equation (3.4b) we can see that the nonlocal operator M "b is written 
in a noncovariant way. Using the Faddeev-Popov trick to go over to a 
covariant gauge, we can obtain the covadant form defined by the formula 
MLet(x) = []~ - O~[d~, a]. To that purpose, we must transfer the integration 
measure defined on the surface f3 = Oi~ i = 0 to the surface f~ = 0~a/r = 
0, which defines the Lorentz gauge. The same argument can be used on the 
surface f2. Moreover, once the path integral over the field ~ is performed 
in equation (3.5), the surface f2 becomes the time derivative of the surface f3. 

Subsequently, as usual in non-Abelian gauge theories, also in the higher- 
derivative case it is convenient to work in a generalized gauge defined by 

O~d~(x) = cq(x) (3.8a) 

O~(x) = al(X) = ~2(x) (3.8b) 

with cq(x) and ~2(x) arbitrary matrices. 
Considering that the partition function (3.6) does not depend on eq or 

~2, as usual we can integrate over both quantities with a Gaussian weight 

exp[ihl tr f d3x oL~(x) + iceke tr f d3x o~(x) 1 

Moreover, we must write the functional det Mab(st) by using the integral 
representation 

det M= f exp[i f d3xga(x)Mab(s~)rlb(x)] ~g ~q (3.9) 



1048 Foussats, Manavella, Repetto, Zandron, and Zandron 

where ~(x) and -q(x) are the auxiliary anticommuting scalar functions called 
the Faddeev-Popov ghost. 

Finally, the partition function (3.6) is given by 

f Z = ~ ~t~(~) ~ ( ~ )  ~ ~nq exp i[5 ~ (3.10) 

where the extended action 9 ~ is written 

'~70:~ = ~ e f f  - -  d3x (OixAa~) 2 nt- c2--2 (o~Aa~) 2 

+ _~-~Tylna _ fabc~aAb~. 0 .qC ( 3 . 1 1 )  

From equation (3.10) we can see that the quantum problem remains 
defined in terms of a path integral, in which the independent fields are the 
original gauge field , ~ ,  the matter Dirac spinor field t~, and the unphysical 
ghost fields ~ and "q. Consequently, it is possible now to apply diagrammatic 
techniques defining proper Feynman rules for propagators and vertices corres- 
ponding to these fields. 

4. DIAGRAMMATIC AND FEYNMAN RULES 

Looking at equation (3.11) and taking into account expression (3.7) for 
~feff, we can easily recognize the propagators defined by the quadratic part 
of the Lagrangian density and the remaining part of it can be represented 
by vertices. 

The propagator of the fermionic field ~b is the usual one. Therefore, it 
is more interesting to analyze the gauge field propagator in which the higher- 
derivative feature of the model is exposed. 

The action 9 ~* can be written in pieces as follows: 

So. = ,~o~(,.~1~) %. ,~Ov~(S~p.) + ,~jp:~(~) + ~nt(S~tx, ~j) ._[_ ~host (4.1) 

where 9 ~ ( ~ )  defines the gauge field propagator; 5 f* (~ )  defines the differ- 
ent vertices whose legs are gauge fields; fT*(th) defines the fermionic field 
propagator; 9~ t~) defines the usual vertex ~t~/~; and finally b~ghost 
contains the ghost field propagator and the well-known vertex ~ 0 - q ,  which 
is linear in momentum. 

For instance, the first term on the right-hand side of equation (4.1) 
corresponding to the gauge field propagator can be written 



Non-Abelian Higher-Derivative Chern-Simons Theories 1 0 4 9  

f 
= d x[A~(D ) A~] (4.2) 

The 3 • 3 matrix (D-I) r defined in equation (4.2) is the inverse of 
the propagator of the gauge field ~ .  It is Hermitian and nondegenerate and 
it can be invertible. So, the propagator D~,,(k), in the momentum space, can 
be straightforwardly evaluated. The general case for nonzero topological 
mass of the gauge field is very tedious to compute and does not bring anything 
new. It is possible, however, to obtain the expression for the propagator in 
the n = 0 case, which gives useful information. The det[D-l(k)] is given by 

det[D-l(k)] = e(1 - c 2 ~ )  X A(k0, k) (4.3) 

where A(ko, k) is the function 

A = )kl~2(1 - -  c 2 k  2) -]-- c 2 ( k  2 - 6 ) 2 [ ) k ( k 2  - E)  - kZ(1 - c2k2)] (4.4) 

a n d ~  + k ~ -  k 2 = k  2 - k ~ = e a n d k ~  + c2h2k~= h. 
Now, by computing the matrix elements D~,(k), we find the gauge 

field propagators 

( 1 -  c2~)(~-- k 2) + Xk 2 
Do0 = A (4.5a) 

( h -  1 + cZk2)koki 
Doi = Dio = A (4.5b) 

D ~ -  

where A(ko, k) is given by 

1 
(4.5c) 

A = ~(1 - c2k2)(h - 1 + c2k 2) + c:(k 2 - ~)[)t(k 2 - ~) 

- k2(1 - c2k2)] (4.6) 

Looking at equations (4.4) and (4.6), we see that in the limit c 2 ~ 0, 
the above functions take the values A = ) ~ 2  and A = E(hl -- 1). Therefore, 
in that limit, the covariant expression of the gauge field propagator is given 
by D~.~ = g~,,& + (1 - Xlt)k~k,,& 2. This form, depending on the unique 
parameter )~1, is usual in a non-Abelian gauge theory written in a general 
covariant gauge. 

At this stage we must look at the convenience of adding higher-derivative 
terms in the Lagrangian density. The first remark is that for large momentum, 
the propagator behaves like - 1 / k  4. 

This guarantees that in those diagrams in which the propagator of the 
gauge field occurs, the ultraviolet behavior is improved. In the perturbative 
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framework, we are going to consider one-loop diagrams, which in the model 
without higher-derivative terms have a superficial degree of divergence. Such 
diagrams are, for instance, the correction to the fermion line E(p) and the 
vertex correction Vp(p, q), whose analytical expressions have respectively 
the form 

f d3k "Y~('Y'P - 3"k - m)% 
~(P) -- (2'rr) 3 iP ---k-~ ; m ~ • D~(k) (4.7) 

f d3k ('y'p + ~ ' k  - m) 
Vp(p,q)--  (-~w)3"y~ (p + k) 2 + rn 2 ~/p 

X (~ 'q  + ",/.k - m) 
(q + k)2 + m2 Yv • D~(k) (4.8) 

If we analyze these diagrams, we can see that for large momentum of 
the gauge field, the integrals in equations (4.7) and (4.8) behave as - f  dkl 
k 3 and ~dk/k 4, respectively. Consequently, the new gauge field propagator 
has an ultraviolet behavior so that the Feynman integrals (4.7) and (4.8) give 
convergent results. 

Finally, we briefly comment upon the part 5 ~ of the action written in 
(4.1), which defines the different vertices of the model with gauge field legs. 
Due to the introduction of higher-derivative terms, the appearance of new 
vertices in the model is the price we must pay. Looking at the expression 
(3.7) for 5D~ff, in addition to the usual three-leg vertex in the gauge field AAA, 
we can see that there are new vertices containing more legs in the gauge 
field and some of them with momentum insertion. All the different vertices 
defined in 5 ~* are present in terms of the following type: cZfabcF'teAhFCAaF~, 
cZfab~OFaAbF ~, and c20FaOF a. 

The above results and comments do not solve the problem of regulariza- 
tion and renormalization of the model. Simply, it was found that the new 
propagator (4.5) has a better ultraviolet behavior because for large momentum 
it behaves like k -4 and so we can gain two powers with respect to the usual 
propagator. Therefore, we can conclude that the inclusion of higher-derivative 
terms in the Lagrangian improves the behavior of propagators at large momen- 
tum, rendering the model less divergent. 

On the other hand, it is known that the dimensional regularization method 
is problematic in a field theory containing the volume form e ~p. In these cases, 
other gauge-invariant regularization methods, for instance, the Pauli-Villars 
procedure, must be used (Alvarez-Gaume et al., 1990). Moreover, it is 
believed that the Chern-Simons field theories belong to the category of finite 
theories, that is, theories containing a finite number of divergent diagrams. 
Consequently, at this stage, in order to solve completely the problem, it 
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only remains to regularize a renormalizable model. We do not complete the 
procedure here because it is carried out following conventional methods. 

Before finishing the analysis, the unitarity problem deserves comment. 
It is well known (Hawking, 1987) that in quantum field theories described 
by Lagrangians containing higher-derivative terms unitarity can be violated. 
This occurs when ghost states with negative norm are present. In a previous 
paper (Foussats et al., 1995), where an Abelian higher-derivative model was 
analyzed, the unitarity problem was treated carefully at least at tree level. In 
the non-Abelian case the same discussion holds. Therefore, following the 
steps given in Foussats et al. (1995; see also 't Hooft and Velman, 1973), 
we must consider first the gauge field propagator D~(k). Next, we consider 
the 3 X 3 matrix residue KR~(k) obtained from the matrix Dr, . by leaving 
out the poles. The matrix residue K~(k) is Hermitian and can be diagonalized 
and has three different nonzero eigenvalues. Consequently (Faddeev and 
Slavnov, 1980), a set (a) of real currents J~)(k) can be defined, one for every 
nonzero eigenvalue. When all the eigenvalues of the matrix residue at the 
pole are positive the normalization is given by 

J~')(k)KR~(k)J~)(k) = + 1 (4.9) 

When the matrix residue has a negative eigenvalue at the pole, it corres- 
ponds to states with negative norm (i.e., the unitarity is lost) and they are 
physically unacceptable. So, by assuming the existence of a positive metric 
Hilbert subspace stable under the time evolution, in order to recover the 
unitarity, the normalization in equation (4.9) must be done with a minus one. 
This trick to retrieve the unitarity of a theory is usually known as the indefinite 
metric prescription. 

5. CONCLUSIONS 

The conclusions are very simple. Starting from a singular second-order 
Lagrangian, we found the classical generalized Hamiltonian formalism for a 
non-Abelian CS gauge theory described by means of a higher-order Lagran- 
gian coupled to fermionic matter. Next, the canonical quantization was carried 
out by following as closely as possible the canonical Dirac algorithm valid 
for usual constrained Hamiltonian systems. Once the set of constraints was 
classified into first class and second class and the Hamiltonian of the system 
as first-class dynamical quantity was found, we were ready to construct the 
path-integral formalism. 

Then the idea was to apply the path-integral method in the framework 
of perturbation theory in order to obtain information about the behavior of 
some Feynman integrals. The aim was to know if the convergence of the 
model is improved or not when higher-derivative terms are added to the 
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Lagrangian.  We showed that the new propagator  of  the non-Abel ian  gauge 
field has an ultraviolet behavior  such that the higher-derivat ive model  is less 
divergent than the usual one. 

The  path-integral quantization method is also very interesting because  
it can satisfactorily solve the partition function in the Hamil tonian  fo rmal i sm 
by using a natural generalization of  the Faddeev -Sen janov ic  method.  This  
is possible  because the equation (3.5) for the partition function is writ ten in 
the extended phase space in terms of  Hr.  The Hamil ton  equations al lows us 
to come  back to the original action as a functional depending only on the 
gauge field ~ r  

Moreover ,  we can find a suitable set of  compat ib le  gauge-f ixing condi-  
tions which satisfy det[Ei,j~]D :~ 0. This determinant  has just  the gauge field 
dependence which permits  us to use the F a d d e e v - P o p o v  trick to go over  to 
a general covariant  gauge and to introduce the ghost auxiliary field variables.  
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